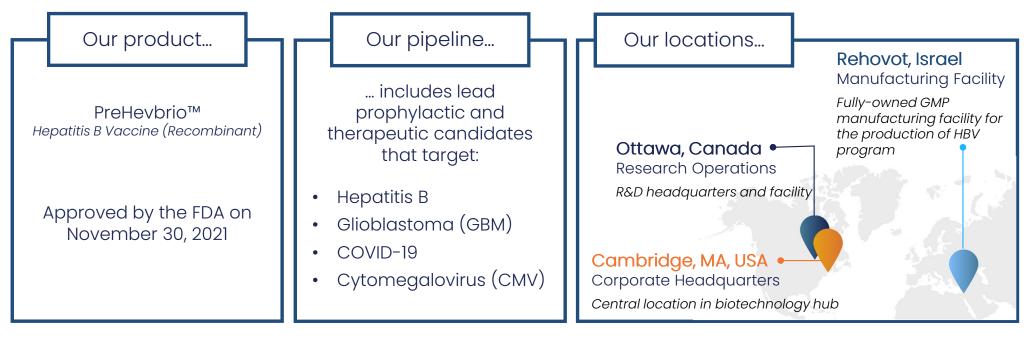


ACTIVATING THE POWER WITHIN

Safety & Immunogenicity of a 3-Antigen Hepatitis B Vaccine, PreHevbrio™ *[Hepatitis B Vaccine (Recombinant)]*


ACIP Committee Presentation

Dr. Francisco Diaz-Mitoma, M.D., Ph.D. - Chief Medical Officer

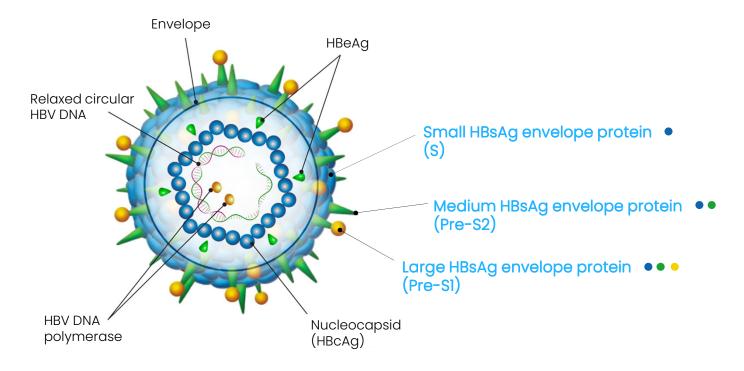
January 2022

About VBI Vaccines

VBI Vaccines is a global biotechnology company driven by immunology in the pursuit of powerful prevention and treatment of disease

Introduction to VBI's 3-Antigen ■ HBV Vaccine – PreHevbio[™]

////


111

///

11//

Hepatitis B Virus (HBV) Structure

HBV genome encodes for three distinct surface antigen, all of which are present on the surface of a wildtype virus – pre-S1, pre-S2, and S antigens

The pre-SI and pre-S2 regions of the hepatitis B virus contain hepatocyte receptor binding sites

References:

Shouval et al. Improved immunogenicity in mice of mammalian cell-derived recombinant hepatitis B vaccine containing pre-S1 and pre-S2 antigens as compared with conventional yeast-derived vaccines. Vaccine. 1994, Vol 12, Num 15; 1453-

Scientifically Differentiated from Other HBV Vaccines

PreHevbrio[™] expresses the three hepatitis B surface antigens – pre-S1, pre-S2, and S – and is manufactured in mammalian cells (vs. yeast)

	PreHevbrio™		Engerix-B®1 Hepatitis B Vaccine (Recombinant)		Recombivax HB® Hepatitis B Vaccine (Recombinant)		Heplisav-B® Hepatitis B Vaccine (Recombinant), Adjuvanted
Viral antigens mimicked:							
S Antigen 🛛 🔵	\checkmark		\checkmark		\checkmark		\checkmark
Pre-S2 Antigen 🔵 🗲	\checkmark						
Pre-SI Antigen 🛛 🕒 😜	\checkmark		'		'		'
Derivation:	Mammalian (CHO) Cell		rDNA yeast		rDNA yeast		rDNA yeast
Adjuvant:	500µg Aluminum hydroxide Alu		500µg Aluminum hydroxide		500µg Aluminum hydroxide		3000µg СрG 1018
Dose of HBs Antigens:	10µg		20µg		10µg or 40µg (HD)		20µg

Note: Head-to-head studies of the 3-antigen HBV vaccine vs. Recombivax HB or Heplisav-B have not been conducted – safety and efficacy cannot be compared across these products

¹Also included in Twinrix[®] [Hepatitis A & Hepatitis B (Recombinant) Vaccine]

Importance of Scientific Differentiation

Native Conformation Elicits Efficient Immunogenicity	 Benefit of Mammalian glycosylation CHO-derived HBsAg folded to its native conformation¹ Major part of yeast-derived antigen misfolded or unfolded, resulting in unnatural conformation¹
Strong Humoral and Cellular Responses with Pre-S1 & Pre-S2 Antigens	 Pre-S1 & pre-S2 regions significantly more immunogenic at T and B cell levels than S² Pre-S1 & pre-S2 antigens can overcome non-responsiveness to S antigen, through expanded T cell epitopes and distinct regulation pathways² Response to pre-S antigens seen with more rapid onset and pronounced antibody response to S antigen^{3,4}
Pre-S1 & Pre-S2 Antigens Increase Breadth of HBV Protection	 High titers of anti-HBs required to prevent infection with non-vaccine genotype HBV⁶ While overall effect of vaccine escape mutants is likely low, emergence of drug resistant mutants with alterations in "a" determinant of S protein is of some concern³ Pre-SI and pre-S2 epitopes may help reduce emergence of vaccine escape mutants⁷ and may reduce risk of HBV infection caused by escape mutants⁸

References:

¹Gerlich W. Prophylactic vaccination against hepatitis B: achievements, challenges and perspective. Med Microbiol Immunol (2015) 204:39-55;

²Milich D, et al. Enhanced immunogenicity of the pre-S region of Hepatitis B surface antigen. Science. 1985; 228 (4704)1195-1199;

⁴Hellstrom U, et al. PreSI epitope recognition in newborns after vaccination with the third-generation Sci-B-Vac vaccine and their relation to the antibody response to hepatitis B surface antigen. Virology Journal. 2009, 6:7; ⁵Shouval D, et al. Improved immunogenicity in mice of a mammalian cell-derived recombinant hepatitis B vaccine containing pre-SI and pre-S2 antigens as compared with conventional yeast-derived vaccines. Vaccine. 1994 Vol 12, Num 15;

1453-1459;
 ¹IA53-1459;
 ¹IADAUE T, Tanaka Y. Cross-protection of Hepatitis B vaccination among different genotypes. Vaccines. 2020, 8, 456;
 ¹Zeinab Nabil Ahmed S, Kouka Saadeldin A. Induced Immunity Against Hepatitis B Virus. World J Hepatology. Jun 28, 2015; 7(12):1660-1670;
 ¹Collola N, et al. Clinical significance of hepatitis B surface antigen mutants. World J Hepatol. Nov 28, 2015; 7(27):2729-2739

³Madalinski K, et al. Antibody responses to preS components after immunization of children with low doses of BioHepB. Vaccine. 2001, Vol 20, Iss 1–2; 92–97;

Extensive History of 3-Antigen HBV Vaccine

• U.S. Activity :

- Phase 3 program (PROTECT & CONSTANT), designed to achieve licensure in adults in U.S., Europe, and Canada, initiated at end of 2017 and completed in 2020
- November 30, 2021 : U.S. FDA approved PreHevbrio™ for the prevention of infection caused by all known subtypes of hepatitis B virus (HBV) in adults age 18 and older
- American Medical Association (AMA) Current Procedural Terminology (CPT®) Panel established a unique CPT code for a 3-antigen (S, Pre-S1, Pre-S2) Hepatitis B (HBV) vaccine (90759)
- Ex-U.S. History :
 - Originally developed at Weizmann Institute in Israel
 - Supported by data from 20+ clinical studies in neonates, children and adults ("legacy studies"), initial marketing authorization received in Israel in 2000
 - Licensed in Israel in three dose levels:
 - 2.5 µg & 5 µg HBsAg/0.5 mL (neonates, infants, and children)
 - 10 µg HBsAg/1 mL (adolescents and adults)
 - Note : High-dose 20 µg HBsAg/1 mL formulation has also been evaluated in several clinical studies
- Distribution Data : 750,000+ individuals estimated to have received vaccine in Israel

TROTECT & CONSTANT Studies

Design & Enrollment

///

||//

Pivotal Phase 3 Program Designed to Achieve Licensure in the U.S., Europe, and Canada

Pivotal Phase 3 program was comprised of two studies - PROTECT & CONSTANT

Phase 3 Study	PROTECT 2-arm safety and immunogenicity study	CONSTANT 4-arm lot-to-lot consistency study
N size	1,607	2,838
Study Population	18-90 years (including those with well- controlled chronic conditions)	18-45 years
Control Vaccine	Engerix-B (GSK)	Engerix-B (GSK)
Primary Endpoint(s)	Based on seroprotection rates (SPR) at Day 196: i. Non-inferiority ¹ in adults ≥ age 18 ii. Superiority ² in adults ≥ age 45	Consistency of Geometric Mean Concentration (GMC) of antibodies at Day 196 across three consecutively manufactured lots of VBI's vaccine
Secondary and Exploratory Endpoint(s)	 Safety and tolerability Serum concentrations of anti-HBs titers, kinetics of SPR, and immunogenicity in subgroups 	 Safety, tolerability, and reactogenicity SPR, serum concentrations of anti-HBs titers, kinetics of immunogenicity, and subgroup analyses

¹Non-inferiority: The lower bound of the 95% CI of the difference between the SPR in the VBI arm minus the SPR in the Engerix-B arm is > -5% ²Statistical superiority: The lower bound of the same 95% CI is >0% - Clinical superiority: The lower bound of the same 95% CI is >5%

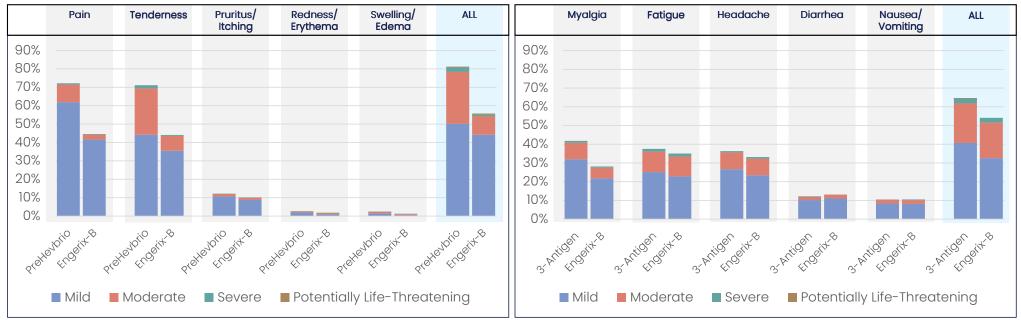
Enrolled Subjects in Phase 3 Program : PROTECT : ~80% Age 45+ | CONSTANT : 100% Age 18-45

	PROT	TECT	CONS	TANT	
Individuals Screened	2,4	72	4,452		
- Screened Failure	865 (35%)	1,614 (36%)		
Participants Randomized	1,607 at 28	study sites	2,838 at 35 study sites		
Clinical Study Interventions	PreHevbrio™ 10 µg	Engerix-B® 20 µg	PreHevbrio™ 10 µg	Engerix-B® 20 µg	
Participants Randomized	796	811	2126	712	
Mean Age	56.6	56.6	33.5	33.4	
Age Segmentation - 18-44 years - 45-64 years - 65+ years	145 (18%) 355 (45%) 296 (37%)	154 (19%) 361 (45%) 296 (37%)	100% age 18	3-45 years	
Gender - Male - Female	315 (40%) 481 (60%)	303 (37%) 508 (63%)	907 (43%) 1219 (57%)	291 (41%) 421 (59%)	
Mean BMI Diabetic Subjects	29.4 54 (7%)	29.1 60 (7%)	25.9	25.7	
Race - White - Asian - Black or African American - Other	715 (90%) 8 (1%) 66 (8%) 7 (1%)	730 (90%) 4 (0.5%) 65 (8%) 12 (1.5%)	1943 (91%) 37 (2%) 123 (6%) 23 (1%)	654 (92%) 9 (1%) 38 (5%) 11 (2%)	
Ethnicity - Hispanic or LatinX - Non-Hispanic/LatinX - Not collected	79 (10%) 714 (90%) 3 (0.4%)	75 (9%) 732 (90%) 4 (0.5%)	195 (9.2%) 1926 (90.6%) 5 (0.2%)	74 (10%) 636 (89%) 2 (0.3%)	
Country/Region - United States - Europe - Canada	338 (43%) 332 (42%) 126 (16%)	342 (42%) 336 (41%) 133 (16%)	564 (27%) 1472 (69%) 90 (4%)	188 (26%) 493 (69%) 31 (4%)	
Withdrew	40 (5.0%)	42 (5.2%)	228(10.7%)	69 (9.7%)	
Completed Study	756 (95%)	769 (94.8%)	 1898 (89.3%)	643 (90.3%)	

PROTECT & CONSTANT Studies

Integrated Safety Analysis

////


///

|||/

Reactogenicity: Solicited Local and Systemic Adverse Events

Local (Injection Site) Solicited AEs Within 7 Days After Vaccination

Systemic Solicited AEs Within 7 Days After Vaccination

- Higher rates of mild-to-moderate pain and tenderness at injection site and myalgia for PreHevbrio –
 generally resolved without intervention in 1-2 days
- No increase in reactogenicity symptoms over the 3-dose vaccination schedule
- Very low rates of vaccine discontinuation due to AEs (0.4% for PreHevbrio; 0.3% for Engerix-B)

Unsolicited Adverse Events

No unexpected safety signals associated with either vaccine and no unusual patterns or concerning clusters of SAEs, medically-attended AEs, or NOCIs

Overview of Unsolicited Adverse Events Through End of Study (Day 336) Subjects With at Least 1:	PreHevbrio™ N=2,920 N (%)	Engerix-B* N=1,523 N (%)	Overview of SAEs Reported Through End of Study (Day 336)
			Subjects with ≥ 1 SAE
Adverse Event (AE)	1546 (52.9)	812 (53.3)	SAEs reported by ≥ 2 subjects
AE within 28 days of vaccination	1411 (48.3)	737 (48.4)	Appendicitis
Vaccine-related AE	445 (15.2)	198 (13.0)	Intervertebral disc protrusion Ankle fracture
Medically-attended AE (MAAE)	663 (22.7)	356 (23.4)	Back pain
New Onset of Chronic Illness (NOCI)	59 (2.0)	38 (2.5)	Cardiac failure congestive
AE leading to treatment withdrawal	15 (0.5)	6 (0.4)	Vertigo
Vaccine-related AE leading to treatment withdrawal	5 (0.2)	1 (0.1)	Erysipelas Pneumonia
AE leading to study withdrawal	8 (0.3)	3 (0.2)	Joint dislocation
Vaccine-related AE leading to study withdrawal	3 (0.1)	1 (0.1)	Tendon rupture
Serious Adverse Event (SAE)	74 (2.5)	24 (1.6)	Syncope Atrial fibrillation
AE leading to death	1 (0.0)	0	Colon cancer

13

PreHevbrio™

N=2,920

N (%)

74 (2.5)

4 (0.1)

3 (0.1)

2 (0.1)

2 (0.1)

2 (0.1)

2 (0.1)

2 (0.1)

2 (0.1)

2 (0.1)

2 (0.1)

2 (0.1)

1 (0.0)

0

N=1,523

24 (1.6)

0

0

1 (0.1)

0

0

0

0

0

0

0

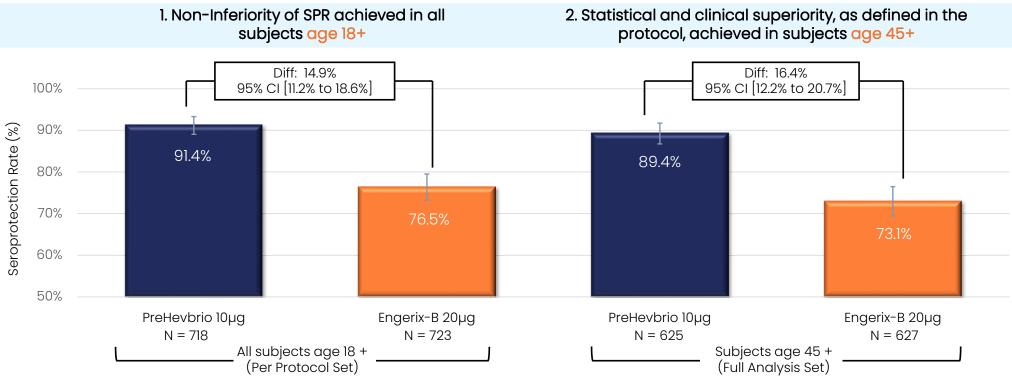
0

2 (0.1) 2 (0.1)

Consistent Safety Profile Across Both Phase 3 Studies & Comparable to Engerix-B

- High 3-dose completion rates for both vaccines
- <u>AEs</u>:
 - Most common were local reactogenicity symptoms, mostly of mild-to-moderate severity
 - Resolved without intervention within 1-2 days no increase with subsequent dosing
 - Most frequently reported reactogenicity symptoms : injection site pain & tenderness
- <u>MAAEs</u>:
 - Similar incidence in both studies across both study arms
 - PROTECT 25.4% and 28.5%; CONSTANT 21.7% and 17.6% for PreHevbrio and Engerix-B, respectively
- <u>SAEs</u>:
 - Uncommon for both vaccines
 - No clustering or unusual pattern of SAEs
 - Two SAEs assessed as possibly related by site investigators PROTECT gastroenteritis viral; CONSTANT ankyloglossia congenital (an infant born to a female study participant)
- <u>Deaths</u>:
 - No deaths reported in PROTECT
 - In CONSTANT, one sudden cardiac death secondary to preexisting hypertrophic heart disease in a participant randomized to PreHevbrio

PROTECT & CONSTANT Studies


Immunogenicity Results

/11

||//

PROTECT Phase 3 Results: Both Primary Endpoints Successfully Met

Seroprotection rate (SPR) at Day 196, 4 weeks post third vaccination

• Non-inferiority: The lower bound of the 95% CI of the difference between the SPR in the PreHevbrio arm minus the SPR in the Engerix-B arm is > -5%

- Statistical superiority. The lower bound of the same 95% CI is >0%
- Clinical superiority: The lower bound of the same 95% CI is >5%

PROTECT Phase 3 Results: Higher SPRs and Anti-HBs Titers Across Subgroups

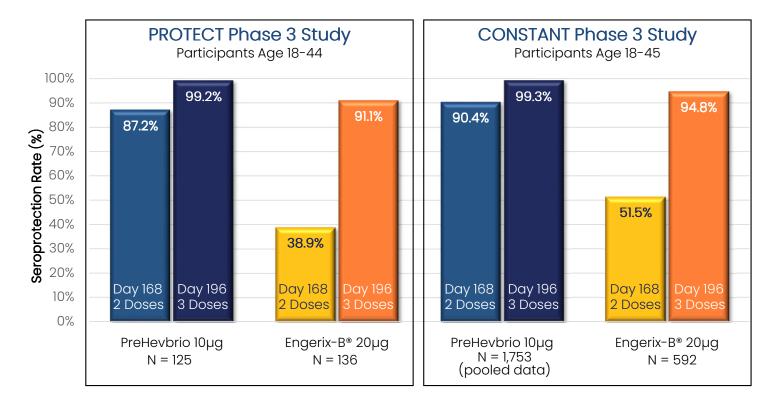
	# of Sub	# of Subjects (N)		Seroprotection Rates (SPR) at Day 196			GMC of Anti-HBs Titers at Day 196		
Population	PreHevbrio (VBI)	Engerix-B (EB)	VBI	EB	EB Difference in SPRs : VBI – EB		EB	X-Fold Increase	
All Subjects	718	723	91.4%	76.5%	⊢	1148.2	192.6	6.0x	
Age									
18-44 years	125	135	99.2%	91.1%		4570.4	720.6	6.3x	
45-64 years	325	322	94.8%	80.1%	⊢	1577.3	276.5	5.7x	
>= 65 years	268	266	83.6%	64.7%	⊢	410.2	63.7	6.4x	
18-39 years	71	72	100.0%	93.1%		5164.2	903.3	5.7x	
40-49 years	158	143	98.7%	89.5%	⊢ ,	2869.6	645.7	4.4x	
50-59 years	153	164	92.8%	78.1%	⊢	1250.0	211.6	5.9x	
60-69 years	221	229	89.1%	72.1%		780.5	122.9	6.4x	
>=70 years	115	115	78.3%	56.5%	·•	241.8	34.8	6.9x	
Diabetes					Î.				
Yes	54	60	83.3%	58.3%	↓¢i	222.3	41.3	5.4x	
No	664	663	92.0%	78.1%		1312.2	221.4	5.9x	
BMI					<u> </u>				
> 30 kg/m2	269	254	89.2%	68.1%	⊢	884.0	110.0	8.0x	
≤ 30 kg/m2	449	469	92.7%	81.0%	· · · · · · · · · · · · · · · · · · ·	1343.0	260.9	5.1x	

PROTECT Phase 3 Results: Higher SPRs and Anti-HBs Titers Across Subgroups (2)

Population	# of Subjects (N)			seroprotection	n Rates (SPR) at Day 196	GMC of Anti-HBs Titers at Day 196			
P	PreHevbrio (VBI)	Engerix-B (EB)	VBI	EB Difference in SPRs : VBI – EB		VBI	EB	X-Fold Increase	
Daily Alcohol Consum	mption								
0-1 Drinks	663	662	91.0%	77.0%	⊢♦ −1	1093.4	202.0	5.4x	
2-3 Drinks	51	57	100%	70.2%	·	2643.8	110.6	23.9x	
Smoking Status									
Current Smoker	92	95	85.9%	70.5%	·	449.4	161.9	2.8x	
Past Smoker	187	198	89.3%	77.3%	·	1162.9	141.1	8.2x	
Non-Smoker	439	430	93.4%	77.4%	⊢♦ −1	1390.1	231.0	6.0x	
Gender									
Male	282	269	86.9%	69.5%	⊢	761.0	106.6	7.1x	
Female	436	454	94.3%	80.6%	\$ 1	1498.2	273.5	5.5x	

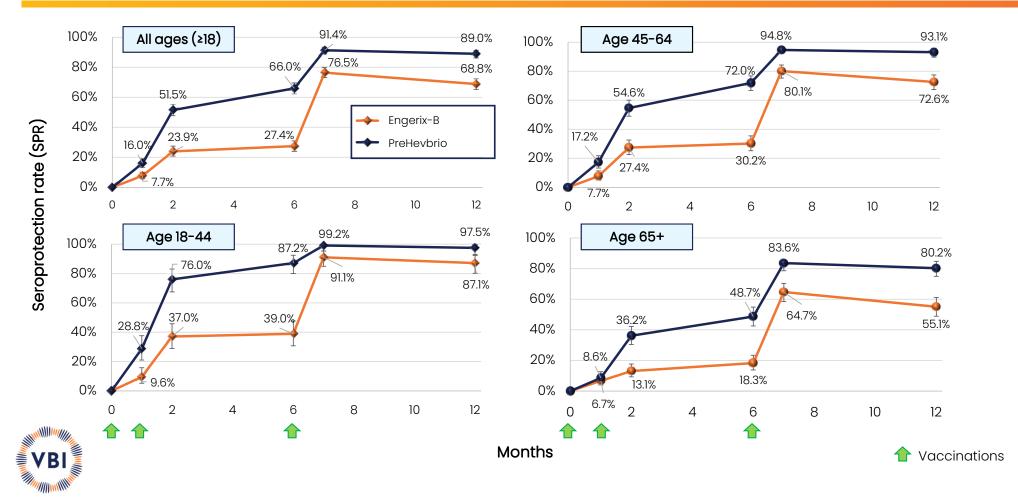
-10% 0% 10% 20% 30% 40%

PROTECT Phase 3 Results: Higher SPRs and Anti-HBs Titers Across Subgroups (3)

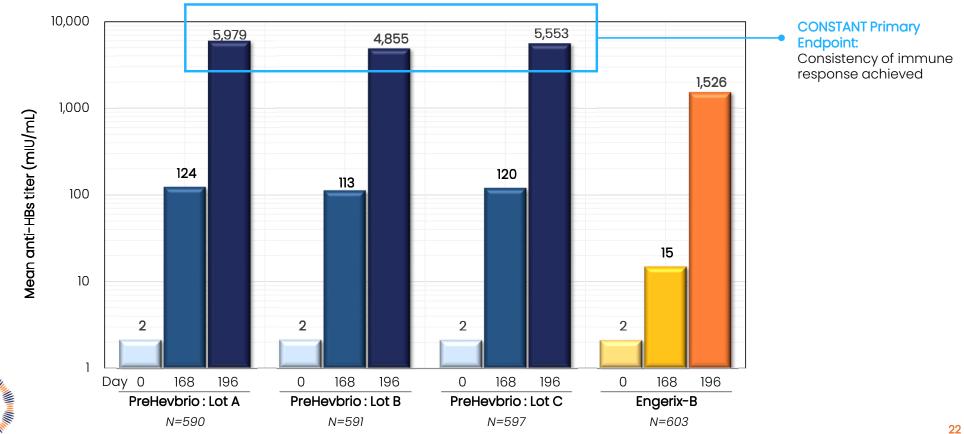

# of Subjects (N)				Seropr	otection R	ates (SPR) at Day 196	GMC of An	GMC of Anti-HBs Titers at Day 196		
Population	PreHevbrio (VBI)	Engerix-B (EB)	VBI	EB	EB Difference in SPRs : VBI – EB		VBI	EB	X-Fold Increase	
Race										
White	648	660	92.0%	76.7%		⊢♦ -1	1229.6	187.8	6.5x	
Black/African American	57	51	86.0%	76.5%		•	535.9	291.4	1.8x	
Other	13	12	84.6%	66.7%	F	•	1066.4	131.8	8.1x	
Ethnicity										
Hispanic/LatinX	67	65	89.6%	69.2%		·•	820.9	81.1	10.1x	
Non- Hispanic/LatinX	648	655	91.5%	77.1%		⊢♦ −1	1189.2	206.4	5.8x	
Region										
U.S.	297	304	85.9%	67.4%		⊢	544.0	95.7	5.7x	
Europe	302	299	94.4%	83.3%		⊢− ♦−−−1	1851.2	274.5	4.7x	
Canada	119	120	97.5%	82.5%		⊢♦ −1	2204.5	468.1	6.7x	
							•			

VBI

-20% -10% 0% 10% 20% 30% 40% 50%


PROTECT & CONSTANT Phase 3 Results: Higher SPR after Both 2 and 3 Doses in Adults Age 18-45

On average, ~90% of adults age 18-45 vaccinated with PreHevbrio were protected after 2 doses (Day 168) vs. ~40-50% of those who received Engerix-B



PROTECT Phase 3 Results: Higher SPR at All Timepoints in All Age Groups

CONSTANT Phase 3 Results: Rapid Induction of High Anti-HBs Titers

Kinetics of Mean Anti-HBs Titers in Participants Age 18-45 Years

Legacy Studies

////

Ì

|///

Highlighted Immunogenicity Results

Note : These earlier studies are referenced in the BLA & have been previously published

Improved Immunogenicity in Key High-Risk Groups in Investigator-Initiated Studies

ESRD patients who had not developed protective anti-HBs titers after 4 x 40µg of Engerix-B¹

N=29

Proactive Clinical Study

- 3 x 10µg of 3-antigen HBV vaccine
- SPR was 86% (25/29)
- Mean anti-HBs titer : 267 ± 59.5 mIU/mL

Retroactive Analysis (Control)

- Retrospective analyses of Engerix-B vaccination for 1999-2001
- SPR 56% (19/34)
- Mean anti-HBs titer : 109.7 ± 35.6 mIU/mL

HIV

HIV+ patients, age 18+, with negative HBV serology²

N=31

Proactive Clinical Study

- 3 x 10µg of 3-antigen HBV vaccine
- After 2nd Dose:
 - SPR : 65%
 - Mean anti-HBs titer : 30 (6-126) mIU/mL
- After 3rd Dose:
 - SPR : 84%
 - Mean anti-HBs titer : 253 (81-408) mIU/mL

Historic Patient Controls

 SPR in response to standard single-antigen HBV vaccines among HIV-infected individuals has been 17.5% - 53%

Non-/Low-Responders

Non-/Low-responders after ≥ 3 doses of conventional yeast-derived HBV vaccines – Age 18+³

N=15 non-responders, 6 low-responders*

- 3 x 10µg of 3-antigen HBV vaccine
- After 1st Dose:
 - Non-Responders:
 - % anti-HBs ≥ 10 mIU/mL : 87% (13/15)
 - % anti-HBs ≥ 100 mIU/mL : 67% (10/15)
 - Low-Responders:
 - 67% (4/6) w/ titers 881-3978 mIU/mL
- After 3rd Dose:
 - Non-Responders:
 - % anti-HBs ≥ 10 mIU/mL : 93% (14/15)
 - % anti-HBs ≥ 100 mIU/mL : 80% (12/15)
 - Low-Responders:
 - 100% w/ titers 603-6569 mIU/mL

*Defined as anti-HBs titers ≥ 10 mIU/mL but < 100 mIU/mL

References:

Weinstein et al., "Improved Immunogenicity of a Novel Third-Generation Recombinant Hepatitis B Vaccine in Patients with End-Stage Renal Disease," Nephron Clin Pract 2004; 97: c67-c72; ²Alon et al. Immunogenicity of Sci-B-Vac (a Third-Generation Hepatitis B Vaccine) in HIV-Positive Adults. *IMAJ*. March 2017, Vol. 19.; ³Krawczyk A, et al. Induction of a robust T- and B-cell immune response in non- and low-responders to conventional vaccination against hepatitis B by using a third generation PreS/S vaccine. *Vaccine*. 2014; 32:5077-5082

≣ Summary

Supported by an Extensive Dataset, PreHevbrio Has Demonstrated Benefit for Adults

In adults vaccinated with PreHevbrio, data demonstrated:

- ✓ A well-established safety profile
- \checkmark Higher rates of seroprotection in adults
- ✓ Robust immunogenicity regardless of age
- Rapid onset of protection
- ✓ Higher immunogenicity in key high-risk populations

VBI Vaccines Inc. | www.vbivaccines.com

Existing Publications Relating to VBI's 3-Antigen HBV Vaccine (1)

- Alon D, Stein GY, Rn VH-G, Tau L, Brosh T, Turner D. "Immunogenicity of Sci-B-Vac (a Third-Generation Hepatitis B Vaccine) in HIV-Positive Adults." Isr Med Assoc J. 2017;19:4.
- Atsmon, J, Machluf N, Yagon-gur V, Sabbah C, Spaans JN, Yassin-Rajkumar B, Anderson DE, Popovic V, Diaz-Mitoma F.
 "Rapid and high seroprotection rates achieved with a tri-antigenic hepatitis B vaccine in healthy young adults: Results from a Phase IV study". Vaccine. (2021).
- Diaz-Mitoma F, et al. "Assessment of immunogenicity and safety across two manufacturing lots of 3-antigen hepatitis B vaccine, Sci-B-Vac®, compared with Engerix-B® in healthy Asian adults: A Phase 3 randomized clinical trial". Vaccine. 2021.05.067.
- Esaulenko EV, Yakovlev AA, Volkov GA, Sukhoruk AA, Surkov KG, Kruglyakov PV, et al. "Efficacy and Safety of a 3-Antigen (Pre-S1/Pre-S2/S) Hepatitis B Vaccine: Results of a Phase 3 randomized clinical trial in the Russian Federation". Clin Infect Dis. 2020 Oct 29.
- Gerlich, W. "Prophylactic vaccination against hepatitis B: achievements, challenges, and perspectives". Med Microbiol Immunol. (2015) 204: 39-55.
- Hellström UB, Madalinski K, Sylvan SP. "PreSI epitope recognition in newborns after vaccination with the third-generation Sci-B-Vac[™] vaccine and their relation to the antibody response to hepatitis B surface antigen". Virology Journal. 2009;6(1):7.

Existing Publications Relating to VBI's 3-Antigen HBV Vaccine (2)

- Krawczyk A, et al. "Induction of a robust T- and B-cell immune response in non- and low-responders to conventional vaccination against hepatitis B by using a third generation PreS/S vaccine". Vaccine. 2014; 32:5077-5083.
- Madalinski K, Sylvan SP, Hellström U, Mikolajewicz J, Zembrzuska-Sadkowska E, Piontek E. **"Antibody responses to pre-S** components after immunization of children with low doses of BioHepB". *Vaccine*. 2001 Oct 12;20(1–2):92–7.
- Madalinski K, Sylvan SP, Hellström UB, Mikolajewicz J, Dzierzanowska-Fangrat K. **"Presence of anti-preS1, anti-preS2, and anti-HBs antibodies in newborns immunized with Bio-Hep-B™ vaccine"**. *Medical Science Monitor*. [cited 2019 Apr 10]
- Milich D, et al. "Enhanced immunogenicity of the pre-S region of hepatitis B surface antigen". Science. 1985: 228 (4704) 1195-1199
- Milich D, et al. "Immune response to the pre-S(1) region of the hepatitis B surface antigen (HBsAg): a pre-S(1—specific T cell response can bypass nonresponsiveness to the pre-S(2) and S regions of HBsAg". J Immunol. 1986; 137:315-322.
- Raz R, Dagan R, Gallil A, Brill G, Kassis I, Koren R. **"Safety and immunogenicity of a novel mammalian cell-derived** recombinant hepatitis B vaccine containing Pre-S1 and Pre-S2 antigens in children". Vaccine. 1996 Feb;14(3):207–11.
- Rendi-Wagner P, Shouval D, Genton B, Lurie Y, Rümke H, Boland G, et al. "Comparative immunogenicity of a PreS/S hepatitis B vaccine in non- and low responders to conventional vaccine". Vaccine. 2006 Apr 5;24(15):2781–9.
- Safadi R., et al. "Efficacy of birth dose vaccination in preventing mother-to-child transmission of hepatitis B: a randomized controlled trial comparing Engerix-B and Sci-B-Vac". Vaccines. 2021 Apr;9(4) 331.

Existing Publications Relating to VBI's 3-Antigen HBV Vaccine (3)

- Shouval D, Ilan Y, Adler R, Deepen R, Panet A, Even-Chen Z, et al. "Improved immunogenicity in mice of a mammalian cellderived recombinant hepatitis B vaccine containing pre-S1 and pre-S2 antigens as compared with conventional yeastderived vaccines". Vaccine. 1994 Jan;12(15):1453–9.
- Shouval D, Ilan Y, Hourvitz A, Mosseri R, Solomon A, Zychowicz C, et al. "Immunogenicity of a mammalian cell-derived recombinant hepatitis B vaccine containing pre S2 and pre S1 antigens: A preliminary report". In: Viral Hepatitis and Liver Disease. K. Nishioka, H. Suzuki, S. Mishiro, T. Oda. Tokyo: Springer Verlag; 1993. p. 543–6.
- Shouval D. "Hepatitis B vaccines". Journal of Hepatology. 2003 Jan; 39:70-6.
- Shouval D, Roggendorf H, Roggendorf M. **"Enhanced immune response to hepatitis B vaccination through immunization** with a Pre-S1/Pre-S2/S vaccine". *Med Microbiol Immunol.* 2015 Feb;204(1):57–68.
- Sylvan SPE, Madalinski K, Hellström UB. "Anti-preS responses influence the anti-HBs response in newborns after vaccination with the third generation Sci-B-Vac vaccine". Vaccine. 2009 Dec 11;28(2):446–51.
- Vesikari T., et al. "Immunogenicity and safety of a tri-antigenic hepatitis B vaccine, Sci-B-Vac[®], compared with a monoantigenic HepB vaccine, Engerix-B[®], in adults: The PROTECT randomized clinical trial". The Lancet Infectious Diseases. 2021. S1473-3099(20)30780-5.
 - Linked Article/Comment: van Bömmel F, et al. "Three are better than one-increasing HBV Seroprotection by a triantigenic vaccine". The Lancet Infectious Diseases. May 2021. S1473-3099(20)30845-8

Existing Publications Relating to VBI's 3-Antigen HBV Vaccine (4)

- Vesikari T., et al. "Immunogenicity and safety of a 3-antigen hepatitis B vaccine vs a single-antigen hepatitis B vaccine: a phase 3 randomized clinical trial". JAMA Network Open. 2021; 4(10).
- Weinstein T, Chagnac A, Boaz M, Ori Y, Herman M, Zevin D, et al. "Improved immunogenicity of a novel third-generation recombinant hepatitis B vaccine in patients with end-stage renal disease". Nephron Clinical Practice. 2004 Nov 17;97(2):c67–72.

